Posted: May 15, 2012 by Wildcat in Uncategorized
Tags: , , ,

Piezoelectric materials can convert mechanical energy into electrical energy1, 2, and piezoelectric devices made of a variety of inorganic materials3, 4, 5 and organic polymers6 have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures7. Previously, it was shown that hierarchically organized natural materials such as bones8, collagen fibrils9, 10 and peptide nanotubes11, 12 can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V−1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation. (via Virus-based piezoelectric energy generation : Nature Nanotechnology : Nature Publishing Group)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s